
IEEE Test and Diagnostics
Standards

John Sheppard
ARINC

2551 Riva Road
Annapolis, MD 21401

410-266-2099
jsheppar@arinc.com

Mark Kaufman
NWAS

PO Box 5000
Corona, CA 91718

909-273-5725
kaufman.mark@corona.navy.mil

Test And Diagnosis Standards

• IEEE Std 1232-1995. IEEE Standard for Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE): Overview and Architecture

• IEEE Std 1232.1-1997. IEEE Standard for Artificial
Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE): Data and Knowledge
Specification

• IEEE Std 1232.2-1998. IEEE Trial-Use Standard for
Artificial Intelligence Exchange and Service Tie to All Test
Environments (AI-ESTATE): Service Specification

• IEEE Std P1522. Draft Standard for Standard Testability
and Diagnosability Characteristics and Metrics

Diagnosis

• Derived from two Greek words:
– δια: about/through
– γιγνοσκην: discernment/knowledge

• Any conclusion that can be drawn about the
health state of a system under test.

• Includes “no fault.”

Information Model

• An information model is a formal description
of types (classes) of ideas, facts, and
processes that together form a model of a
portion of interest of the real world.

• Information models provide a formal
specification of the semantics of information
in an “Information System”

Information Model

• Purpose: To identify clearly the objects in a “domain
of interest” to enable precise communication about
that domain.

• Comprises:
– objects or entities
– relationships
– constraints

• When taken together, these provide a complete,
unambiguous, formal representation of the
information in the domain of interest.

Information Exchange Files

• Information can be stored in files by one
application and read from the files by another.

• The file format provides a common syntax.
• The legal content of the file is defined by the

semantics of the model.

Information Exchange Services

• Information can be shared between applications by
way of software or hardware services over a
communications backbone.

• The interface definition provides a common syntax.
• The legal content of the message is defined by the

semantics of the model.

Common Element Model

• Contains model elements in common to
diagnosis independent of diagnostic
approach.

• Provides for hierarchical relationships among
model elements.

• Includes model for cost attributes.
• Captures information about required context.
• Developed in ISO 10303 Part 11 (EXPRESS).

Simplified CEM

1,1
name_type

1,1
name_type

1,2
description_type

1,2
description_type

(ABS)
*hierarchical_element

1

4,1
diagnosis

func

(INV) implemented_by S[1:?]

includes_function S[1:?]
repair_item

tested_by S[0:?] 1,3
test

1,5
resource

1,4
action

1,3
test

repaired_by S[0:?] 1,6
repair

1,6
repair

2,2(4)

*name description

member S[0:?]
(INV) parent S[0:?] at_indenture_level S[1:?]

level

successor
(INV) predecessor

*name

description

2,1(1)

Dynamic Context Model

• Captures state of diagnostic reasoning.
• Compatible with all of the inference models

defined within AI-ESTATE.
• Instantiated during a diagnostic session.
• Can be saved to provide historical trace of

diagnostic process.
• Includes current context for comparison with

required.
• Developed in ISO 10303 Part 11 (EXPRESS).

session
knowledge_base

*active_knowledge

models S[1:?]

active_model

trace L[0:?]

*step
model_status S[1:?] reasoner_hypothesis S[0:?]

*inferred_diagnosis

state

diagnosis_outcome

confidence

confidence REAL

test_status S[1:?]
*inferred_test

inferred_confidence inferred_outcome

test_outcome

test_performed S[1:?]

*active_test

test_action L[1:?]

*active_action
time_incurred S[0:?]

*active_time_cost
actual_value

cost_value

REAL

cost_incurred S[0:?]

*active_cost
actual_value

actual_confidence actual_outcome

diagnoses S[2:?]

occurs_within
session_context

caused_by
cause

Simplified
DCM

General Diagnostic Process

Start

Repair

Diagnosis

Result

Test

Ready
to Test End

create_step

save_session

apply_outcomecreate_step

get_repair

verify

perform_test

select_test

AI-ESTATE Execution Model

Analysis
Performed

Session
Started

No
Session

Step
Created

close_process initiate_process

close_
process

create_next_step

close_
process

create_
next_
step

apply_outcomes
update_state

AI-ESTATE Client-Server View

User Interface

Diagnostics

Test Controller

Info Mgmt

AI-ESTATE

Win, HTML

TMIMS, EDIF

IVI

Application
Executive

AI-ESTATE Component View

Communications Backbone

Diagnostic
Reasoner

Test
System DBMS

System
Under
Test

Application
Executive

AI-ESTATE Application Model

Application Diagnostic
Reasoner

12
32

 In
te

rfa
ce

 (
se

rv
ic

es
)

Service Definitions

• Use EXPRESS to define function and
procedure prototypes.

• All services one of create, put, get, delete.

• Service categories:
– Model traversal services
– Reasoner control services
– Utility and counting services

• Set of higher-order services defined.

Testability

• A design characteristic which allows the
status (operable, inoperable, or degraded) of
an item to be determined and the isolation of
faults within the item to be performed in a
timely manner.

MIL STD 2165

Testability

• An Equipment Has Good Testability If Faults
Can Be Confidently and Efficiently Identified.
– Confidently Means Frequently and Unambiguously

Identifying Only Failed Elements With No Removal
of Fault-tree Elements.

– Efficiently Means Optimizing the Resources
Required.

Diagnosability

• The ability to discern the health state of the
system.

• Testability and Diagnosability are intrinsically
related.
– Cannot diagnose without tests.
– Testing without diagnosis is a vacuous endeavor.

Metrics, Why Worry?

• Terms Not Precisely Defined or Have Multiple
Definitions

• Different Diagnostic Tools Calculate Terms
Differently

• Establishing Requirements, and Predicting
and Evaluating Testability Are Difficult

Metrics Goals

• Precise and Unambiguous Definitions
• Precise and Unambiguous Calculations
• Derived from Test Model

– Not an Isolated Definition

• Repeatable Metrics

Two 2165 Definitions of FFD

• The fraction of all faults detected by BIT and
external test equipment

• The fraction of all detectable faults detected
by BIT and external test equipment

More FFD Definitions

• Fraction of all faults detected through the use
of defined means. Defined means implies all
means of detection that have been identified.

• Percentage of all faults automatically
detected by BIT/ETE

• Percentage of all faults detectable by
BIT/ETE

More FFD Definitions

• Percentage of all faults detectable on-line by
BIT/ETE

• Percentage of all faults and out-of-tolerance
conditions detectable by BIT/ETE

• Percentage of all faults detectable by any
means

Precise FFD

level

level
level sisnum_diagno

ablenum_detectFFD =

Example (num_diagosis)

FUNCTION num_diagnosis(model:EDIM.edim; lvl:CEM.level) : NUMBER;
LOCAL

diag_count : NUMBER;
END_LOCAL;
diag_count := SIZEOF(QUERY(tmp <* model.model_diagnosis |

tmp.level_of_diagnosis = lvl);
RETURN(diag_count);

END_FUNCTION;

Example (num_detectable)

FUNCTION num_detectable(model:EDIM.edim; lvl:CEM.level) : NUMBER;
LOCAL

diags : SET [0:?] OF EDIM.inference
detect_set : SET [0:?] OF CEM.diagnosis := NULL;

END_LOCAL;
REPEAT I := LOINDEX(model.inference) TO HIINDEX(model.inference);

diags := QUERY(tmp <* model.inference[I].conjuncts |
(TYPEOF(tmp) = 'EDIM.diagnostic_inference'));

diags := diags + QUERY(tmp <* model.inference[i].disjuncts |
 (TYPEOF(tmp) = 'EDIM.diagnostic_inference'));
diags := QUERY(tmp <* diags |

tmp.pos_neg = negative OR
NOT(tmp.diagnostic_assertion = 'Good'));

detect_set := detect_set +
QUERY(tmp <* diags.for_diagnosis |

tmp.level_of_diagnosis = lvl);
END_REPEAT;
RETURN(SIZEOF(detect_set));

END_FUNCTION;

FUNCTION ffd(model:EDIM.edim; lvl:CEM.level) : REAL;
LOCAL

diag_count : INTEGER;
diags : SET [0:?] OF EDIM.inference
detect_set : SET [0:?] OF CEM.diagnosis := NULL;

END_LOCAL;
diag_count := SIZEOF(QUERY(tmp <* model.model_diagnosis |

tmp.level_of_diagnosis = lvl);
REPEAT I := LOINDEX(model.inference) TO HIINDEX(model.inference);

diags := QUERY(tmp <* model.inference[I].conjuncts |
(TYPEOF(tmp) = 'EDIM.diagnostic_inference'));

diags := diags + QUERY(tmp <* model.inference[i].disjuncts |
 (TYPEOF(tmp) = 'EDIM.diagnostic_inference'));
diags := QUERY(tmp <* diags |

tmp.pos_neg = negative OR
NOT(tmp.diagnostic_assertion = 'Good'));

detect_set := detect_set +
QUERY(tmp <* diags.for_diagnosis |

tmp.level_of_diagnosis = lvl);
END_REPEAT;
RETURN(SIZEOF(detect_set)/diag_count);

END_FUNCTION;

Fraction of Faults Detected

Primitives

• Full EXPRESS specification, though formal
and unambiguous, is difficult to read.

• Most metrics can be specified in terms of
formally defined primitives.

• Primitives are defined in EXPRESS.
• Metrics are defined using standard

mathematical notation with primitives as
constituent terms.

Candidate Set of Primitives

• Number of functions
• Number of faults
• Number of detectable

faults
• Number of non-

detectable faults
• Test Cost
• Test Confidence

• Number of tests
• Number of Units (LRU,

SRU, etc)
• Number of Isolatable

Units
• Repair Cost
• Replacement Cost
• Failure Rate

Summary

• Sharing information is key to any process.
• Formal models are required to ensure information

communicated is unambiguous and understood.
• Standard interfaces and models provide basis for

establishing agreement on information meaning.
• P1232 provides standard information interfaces for

diagnostic applications.
• P1522 provides standard, formal definitions for

metrics assessing system testability/diagnosability

Contact Information

• Dr. John Sheppard, ARINC
– 410-266-2099
– jsheppar@arinc.com

• Mark Kaufman, NWAS
– 909-273-5725

– kaufman.mark@corona.navy.mil

• http://grouper.ieee.org/groups/1232

